top of page

Gloeb-McDonald RG, Fridman G. "Glucose Fuel Cells: Electricity from Blood Sugar". IEEE Rev Biomed Eng. 2024 Feb 22;PP. doi: 10.1109/RBME.2024.3368662. Epub ahead of print. PMID: 38386577.

​

Tom F. Su, Jack D. Hamilton, Yiru Guo, Jason R. Potas, Mohit N. Shivdasani, Gila Moalem-Taylor, Gene Y. Fridman, Felix P. Aplin, "Peripheral direct current reduces naturally evoked nociceptive activity at the spinal cord in rodent models of pain". J Neural Eng. 2024 Apr 1, Epub ahead of print

​

Adkisson PW, Steinhardt CR, Fridman GY. Galvanic vs. pulsatile effects on decision-making networks: reshaping the neural activation landscape. J Neural Eng. 2024 Mar 22. doi: 10.1088/1741-2552/ad36e2. Epub ahead of print. PMID: 38518369.​

​

Pinotsis DA, Fridman G, Miller EK. Cytoelectric coupling: Electric fields sculpt neural activity and "tune" the brain's infrastructure. Prog Neurobiol. 2023 May 18;226:102465. doi: 10.1016/j.pneurobio.2023.102465. Epub ahead of print. PMID: 37210066.​

​

Foxworthy G, Fridman G, “The Significance of Concentration-dependent Components in Computational Models of C-Fibers”, 2023 IEEE EMBC, Sydney Australia, In print

​

Fernandez Brillet C, Roberts D, Della Santina C, Fridman G, “Design of a Wearable Separated Interface Nerve Electrode Device for Rodents”, 2023 IEEE NER Baltimore, In print

​

Cheng C, Foxworthy G, Fridman G, “A Cuff Lead for Delivering Ionic Direct Current (iDC) to Block Neural Activities of Sciatic Nerve”, 2023 IEEE EMBC, Sydney, Australia, In print

​

Cheng A, Adkisson P, Cheng C, Fridman G, “Freeform Stimulator (FS) Implant Design for Non-Pulsatile Arbitrary Waveform Neuromodulation”, 2023 IEEE NER, Baltimore, In print

​

G. E. Foxworthy and G. Y. Fridman, "Freeform Stimulator (FS) Implant Control System for Non-Pulsatile Arbitrary Waveform Neuromodulation," 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), Taipei, Taiwan, 2022, pp. 321-325, doi: 10.1109/BioCAS54905.2022.9948622

 

Thakur R, Fridman GY, "Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds", Micromachines 2022, 13(9), 1408; https://doi.org/10.3390/mi13091408

​

Cheng C, Rashed MZ, Fridman GY. Ionic transistor using ion exchange membranes. Lab Chip. 2022 Jul 12;22(14):2707-2713. doi: 10.1039/d2lc00312k. PMID: 35748422; PMCID: PMC9472566.

​

Adkisson P, Fridman GY, Steinhardt CR. Difference in Network Effects of Pulsatile and Galvanic Stimulation. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3093-3099. doi: 10.1109/EMBC48229.2022.9871812. PMID: 36086346.

 

Thakur, R.; Aplin, F.P.; Fridman, G.Y. A Hydrogel-Based Microfluidic Nerve Cuff for Neuromodulation of Peripheral Nerves. Micromachines 2021, 12, 1522. https://doi.org/10.3390/mi12121522

​

Cynthia R. Steinhardt, Diana E. Mitchell, Kathleen E. Cullen, Gene Y. Fridman, The Rules of Pulsatile Neurostimulation, bioRxiv 2021.08.18.456731; doi: https://doi.org/10.1101/2021.08.18.456731

​

C. R. Steinhardt and G. Y. Fridman, "A Machine Learning-based Neural Implant Front End for Inducing Naturalistic Firing," 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, pp. 5713-5718, doi: 10.1109/EMBC46164.2021.9630548.

​

Cheng, C., Foxworthy, G. & Fridman, G. On-chip ionic current sensor. Appl. Phys. A 127, 314 (2021). https://doi.org/10.1007/s00339-021-04469-x

​

Steinhardt, C. R., & Fridman, G. Y. (2021). Direct Current Effects on Afferent and Hair Cell to Elicit Natural Firing Patterns. iScience, 102205.

​

Steinhardt CR, Fridman GY. Predicting Response of Spontaneously Firing Afferents to Prosthetic Pulsatile Stimulation. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2929-2933. doi: 10.1109/EMBC44109.2020.9175282. PMID: 33018620.

​

Cheng C, Aplin FP, Fridman GY. A microfluidic system integrated with shape memory alloy valves for a safe direct current delivery system. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3544-3548. doi: 10.1109/EMBC44109.2020.9176474. PMID: 33018768.

​

Thakur R, Nair AR, Jin A, Fridman GY. Fabrication of a Self-Curling Cuff with a Soft, Ionically Conducting Neural Interface. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3750-3753. doi: 10.1109/EMBC.2019.8856381. PMID: 31946690.

​

Manca M, Glowatzki E, Roberts DC, Fridman GY, Aplin FP. Ionic direct current modulation evokes spike-rate adaptation in the vestibular periphery. Sci Rep. 2019 Dec 12;9(1):18924. doi: 10.1038/s41598-019-55045-6. PMID: 31831760; PMCID: PMC6908704.

​

Thakur, R., Jin, A., Nair, A., & Fridman, G. Y. (2019). Nerve cuff electrode pressure estimation via electrical impedance measurement. Journal of neural engineering

​

Boutros PJ, Schoo DP, Rahman M, Valentin NS, Chow MR, Ayiotis AI, Morris BJ, Hofner A, Rascon AM, Marx A, Deas R, Fridman GY, Davidovics NS, Ward BK, Treviño C, Bowditch SP, Roberts DC, Lane KE, Gimmon Y, Schubert MC, Carey JP, Jaeger A, Della Santina CC. Continuous vestibular implant stimulation partially restores eye-stabilizing reflexes. JCI Insight. 2019 Nov 14;4(22):e128397. doi: 10.1172/jci.insight.128397. PMID: 31723056; PMCID: PMC6948863.

​

Aplin FP, Fridman GY. Implantable Direct Current Neural Modulation: Theory, Feasibility, and Efficacy. Front Neurosci. 2019 Apr 18;13:379. doi: 10.3389/fnins.2019.00379. PMID: 31057361; PMCID: PMC6482222.

​

Aplin, F. P., Singh, D., Della Santina, C. C., & Fridman, G. Y. (2019). Combined ionic direct current and pulse frequency modulation improves the dynamic range of vestibular canal stimulation. Journal of Vestibular Research,  1-8.

​

Aplin, F. P., & Fridman, G. Y. (2019). Implantable direct current neural modulation: theory, feasibility and efficacy. Frontiers in neuroscience, 13, 379.

​

Aplin, F. P., Singh, D., Della Santina, C. C., & Fridman, G. Y. (2018). Ionic direct current modulation for combined inhibition/excitation of the vestibular system. IEEE Transactions on Biomedical Engineering, 66(3), 775-783.

​

Krishnan, V., Park, S. A., Shin, S. S., Alon, L., Tressler, C. M., Stokes, W., ... & Celnik, P. (2018). Wireless control of cellular function by activation of a novel protein responsive to electromagnetic fields. Scientific reports, 8(1), 8764.

​

Yang, F., Anderson, M., He, S., Stephens, K., Zheng, Y., Chen, Z., ... & Fridman, G. (2018). Differential expression of voltage-gated sodium channels in afferent neurons renders selective neural block by ionic direct current. Science advances, 4(4), eaaq1438.

​

Cheng, C., Nair, A. R., Thakur, R., & Fridman, G. (2018). Normally closed plunger-membrane microvalve self-actuated electrically using a shape memory alloy wire. Microfluidics and nanofluidics, 22(3), 29.

​

Cheng, C., Thakur, R., Nair, A. R., Sterrett, S., & Fridman, G. (2017, October). Miniature elastomeric valve design for safe direct current stimulator. In 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 1-4). IEEE.

​

Fridman, G. (2017, July). Safe Direct Current Stimulator design for reduced power consumption and increased reliability. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1082-1085). IEEE.

​

Galiatsatos, P., Win, T. T., Monti, J., Johnston, P. V., Herzog, W., Trost, J. C., ... & Silber, H. A. (2017). Usefulness of a noninvasive device to identify elevated left ventricular filling pressure using finger photoplethysmography during a Valsalva maneuver. The American journal of cardiology, 119(7), 1053-1060.

​

Ou, P., & Fridman, G. (2017, October). Electronics for a safe direct current stimulator. In 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 1-4). IEEE.

​

Chang, A., Adhikari, S., Stepanian, A., Chung, J., Berges, V., Fridman, G., ... & Reti, I. (2016, December). Neuromodulation for Intractable Self-Injurious Behavior Associated With Autism Spectrum Disorder: A Translational Study. In NEUROPSYCHOPHARMACOLOGY (Vol. 41, pp. S549-S550). MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND: NATURE PUBLISHING GROUP.

​

Hageman, K. N., Kalayjian, Z. K., Tejada, F., Chiang, B., Rahman, M. A., Fridman, G. Y., ... & Andreou, A. G. (2015). A CMOS neural interface for a multichannel vestibular prosthesis. IEEE transactions on biomedical circuits and systems, 10(2), 269-279.

......

Fridman, G. Y., Tang, H., Feller-Kopman, D., & Hong, Y. (2015). MouthLab: a tricorder concept optimized for rapid medical assessment. Annals of biomedical engineering, 43(9), 2175-2184.

 

Chang, A. D., Berges, V. A., Chung, S. J., Fridman, G. Y., Baraban, J. M., & Reti, I. M. (2016). High-frequency stimulation at the subthalamic nucleus suppresses excessive self-grooming in autism-like mouse models. Neuropsychopharmacology, 41(7), 1813.

​

Chang, A., Fridman, G., Baraban, J., & Reti, I. (2014, December). Deep Brain Stimulation for Autistic Self-injurious Behavior. In NEUROPSYCHOPHARMACOLOGY (Vol. 39, pp. S132-S132). MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND: NATURE PUBLISHING GROUP.

​

Dai, C., Fridman, G. Y., Chiang, B., Rahman, M. A., Ahn, J. H., Davidovics, N. S., & Della Santina, C. C. (2013). Directional plasticity rapidly improves 3D vestibulo-ocular reflex alignment in monkeys using a multichannel vestibular prosthesis. Journal of the Association for Research in Otolaryngology, 14(6), 863-877.

​

Fridman, G. Y., & Della Santina, C. C. (2013, July). Safe direct current stimulator 2: concept and design. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3126-3129). IEEE.

​

Valentin, N. S., Hageman, K. N., Dai, C., Della Santina, C. C., & Fridman, G. Y. (2013). Development of a multichannel vestibular prosthesis prototype by modification of a commercially available cochlear implant. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(5), 830-839.

​

Davidovics, N. S., Rahman, M. A., Dai, C., Ahn, J., Fridman, G. Y., & Della Santina, C. C. (2013). Multichannel vestibular prosthesis employing modulation of pulse rate and current with alignment precompensation elicits improved VOR performance in monkeys. Journal of the Association for Research in Otolaryngology, 14(2), 233-248.

​

Fridman, G. Y., & Della Santina, C. C. (2013). Safe direct current stimulation to expand capabilities of neural prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 319-328.

​

Fridman, G. Y. (2013). Methods and Apparatus for Cochlear Implant Signal Processing. Acoustical Society of America Journal, 134, 3966.

​

Fridman, G. Y., & Della SAntina, C. C. (2012). Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(11), 2010-2029.

​

Davidovics, N. S., Fridman, G. Y., & Della Santina, C. C. (2012). Co-modulation of stimulus rate and current from elevated baselines expands head motion encoding range of the vestibular prosthesis. Experimental brain research, 218(3), 389-400.

​

Dai, C., Fridman, G. Y., Davidovics, N. S., Chiang, B., Ahn, J. H., & Della Santina, C. C. (2011). Restoration of 3D vestibular sensation in rhesus monkeys using a multichannel vestibular prosthesis. Hearing research, 281(1-2), 74-83.

​

Chiang, B., Fridman, G. Y., Dai, C., Rahman, M. A., & Della Santina, C. C. (2011). Design and performance of a multichannel vestibular prosthesis that restores semicircular canal sensation in rhesus monkey. IEEE transactions on neural systems and rehabilitation engineering, 19(5), 588-598.

​

Rahman, M. A., Dai, C., Fridman, G. Y., Davidovics, N. S., Chiang, B., Ahn, J., ... & Della Santina, C. C. (2011, August). Restoring the 3D vestibulo-ocular reflex via electrical stimulation: the Johns Hopkins multichannel vestibular prosthesis project. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3142-3145). IEEE.

​

Dai, C., Fridman, G. Y., & Della Santina, C. C. (2011). Effects of vestibular prosthesis electrode implantation and stimulation on hearing in rhesus monkeys. Hearing research, 277(1-2), 204-210.

​

Dai, C., Fridman, G. Y., Chiang, B., Davidovics, N. S., Melvin, T. A., Cullen, K. E., & Della Santina, C. C. (2011). Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis. Experimental brain research, 210(3-4), 595-606.

​

Fridman, G. Y. (2011). Methods And Apparatus For Cochlear Implant Signal Processing. Acoustical Society of America Journal, 130, 3179.

​

Chiang, B., Fridman, G. Y., Dai, C., Rahman, M. A., & Della Santina, C. C. (2011). Neural and Rehabilitation Interface-Design and Performance of a Multichannel Vestibular Prosthesis That Restores Semicircular Canal Sensation in Rhesus Monkey. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(5), 588.

​

Sun, D. Q., Rahman, M. A., Fridman, G., Dai, C., Chiang, B., & Della Santina, C. C. (2011). Chronic stimulation of the semicircular canals using a multichannel vestibular prosthesis: effects on locomotion and angular vestibulo-ocular reflex in chinchillas. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3519-3523). IEEE.

​

Davidovics, N. S., Fridman, G. Y., Chiang, B., & Della Santina, C. C. (2010). Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(1), 84-94.

​

Santina, C. D. C., Migliaccio, A. A., Hayden, R., Melvin, T. A., Fridman, G. Y., Chiang, B., ... & Anderson, I. C. (2010). Current and future management of bilateral loss of vestibular sensation—an update on the Johns Hopkins Multichannel Vestibular Prosthesis Project. Cochlear implants international, 11(sup2), 2-11.

​

Fridman, G. Y., Davidovics, N. S., Dai, C., Migliaccio, A. A., & Della Santina, C. C. (2010). Vestibulo-ocular reflex responses to a multichannel vestibular prosthesis incorporating a 3D coordinate transformation for correction of misalignment. Journal of the Association for Research in Otolaryngology, 11(3), 367-381.

​

Fridman, G. Y., Blair, H. T., Blaisdell, A. P., & Judy, J. W. (2010). Perceived intensity of somatosensory cortical electrical stimulation. Experimental brain research, 203(3), 499-515.

​

Nirenberg, S., Jacobs, A., Fridman, G., Latham, P., Douglas, R., Alam, N., & Prusky, G. (2006). Ruling out and ruling in neural codes. Journal of Vision, 6(6), 889-889.

​

Davidovics, N., Fridman, G. Y., & Della Santina, C. C. (2009). Linearity of stimulus-response mapping during semicircular canal stimulation using a vestibular prosthesis. In Association for Research in Otolaryngology Annual Meeting Abstract (Vol. 339).

​

Chiang, B., Fridman, G. Y., & Della Santina, C. C. (2009). Enhancements to the Johns Hopkins multi-channel vestibular prosthesis yield reduced size, extended battery life, current steering and wireless control. In Association for Research in Otolaryngology Abstract (Vol. 867).

​

Litvak, L. M., Spahr, A. J., Saoji, A. A., & Fridman, G. Y. (2007). Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners. The Journal of the Acoustical Society of America, 122(2), 982-991.

​

Publications

bottom of page